Available online at www.sciencedirect.com
Bowrwal tf

SCIENCE dDIREcTO APPLIED
MATHEMATICS

AND MECHANICS

www.elsevier.com/locate/jappmathmech

Journal of Applied Mathematics and Mechanics 68 (2004) 909-921

THE ROLLING OF A WHEEL WITH A REINFORCED
TYRE ALONG A PLANE WITH SLIPPING

V. G. VIL’KE and I. . KOZHEVNIKOV

Moscow
e-mail: vano1979@online.ru
(Received 25 December 2003)

A previously proposed model [1] of a wheel with a reinforced tyre in which the side walls of the tyre are represented by reinforced
membranes consisting of incompressible rubber, in accordance with the Mooney-Rivlin model [2], is considered. When the tread
is deformed, the exact non-linear conditions for the inextensibility of the reinforcing cords are taken into account, unlike the
conditions in the linearized form used previously in [1]. A potential-energy functional of the deformed tyre as a function of the
deformations of the centre line of the tread and the displacements of the wheel disc, which has six degrees of freedom, is obtained
vsing a number of hypotheses. A complete system of equations is derived and the conditions imposed on the sudden jumps in
the functions describing the deformation of the tread at the boundary points of the previously unknown area of contact of the
tread with the plane when there is slipping is obtained using a model of dry friction. Two steady modes of motion of the locked
wheel are investigated: rectilinear translational motion at a constant speed and spinning around an axis orthogonal to the rolling
plane of the wheel with constant angular velocity. © 2005 Elsevier Ltd. All rights reserved.

A criterion for the transition from the mode in which the wheel is spinning and slipping to the mode
in which spinning occurs without slipping was proposed in [3]. The dynamic interaction between
deformable rigid bodies was investigated in [4-7] using a model of dry friction.

1. MODELLING OF A WHEEL WITH A REINFORCED TYRE

We will assume that the wheel with the reinforced tyre consists of a disc (0) (a rigid body), joined to
the side wall of the tyre (1, 2), which is represented by the parts of two tori, and a tread (3), reinforced
with inextensible steel cords (Fig. 1). We will introduce a fixed system of coordinates OXX,X; (the
wheel is in contact with the surface OXX,) and a moving system of coordinates Cx;x,x3 with origin at

the mass centre of the disc at the point C. The radius vector of a point on the tread is defined in the
form

i=1

3 3
R3((P, é’ t) = 2 Xili + rl"3(B0)F2(9 + (p)[el + lr-lEJe2 + 2 Ui((p7 &: t)ei}

i=1

cos® 0 sin6 cosf —sinf 0 (1.1
L® =1 o 1 o ||, TsB)=| sinp cosp 0 wlrggqh
—sin® O cos® 0 0 1 )

where X3, X; and X; are the coordinates of the mass centre of the disc. I; is a unit vector of the axis
OX;, o and 6 are the angles of rotation about the axes OX; and Cx, respectively, e;, e, and e; are unit
vectors of a cylindrical system of coordinates, » and 2/ are the radius and width of the tread, and Uy,
U, and U are the components of the displacement vector of a point on the tread in a cylindrical system

tPrikl. Mat. Mekh. Vol. 68, No. 6, pp. 1010-1024, 2004.
0021-8928/$-—see front matter. © 2005 Elsevier Ltd. All rights reserved.
doi: 10.1016/j.jappmathmech.2004.11.013
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Fig. 1

of coordinates. The tread consists of a rubber strip, reinforced by steel cords, for which the conditions
for inextensibility, represented by the equations

IR, COSYoﬁgi Sinyg% =1, 1Yo = const

— =1,
19§

and the equivalent equalities

3
=1=22705+ YUY = 0; () = a‘a%)
k=1

[FIRy = 122U, - Uy) + (U, = Uy)P + Uy + (U} + U)Y = 0 (12)

|r'Rs

RS- Ry = 0= US(Uy + Uy + (I + UDUy - US(1+ U, U3 = 0; () = %(_(;
are satisfied.
We previously [1] considered linearized relations (1.2), from which we obtained formulae expressing
U,, U, and Uj as functions of the displacements of the centre line of the tread u(op, ), v(¢, ¢) and
w(o, t), namely

Uy = Ir'&w' +u, U, = w, Uy = Irlew — v (1.3)
If relations (1.3) are substituted into the exact conditions of inextensibility and orthogonality of the
filaments of the cord, it turns out that the function w depends only on the time and w’ = w" = 0, while
the functions u and v satisfy the condition that the middle cord of the tread is inextensible
20u+v)++v)Y+(v-u) =0 (1.4)
Hence, equalities (1.3) take the form
Ul = u((p, t), U2 = W(t), U3 = —v((P, t) (1.5)

The result obtained expresses the fact that the surface of the circular cylinder (the undeformed tread)
when the cord is inextensible and orthogonal, corresponding to a change in the coordinates & and o,
is isometric with a cylindrical surface with generatrix specified by the deformed plane centre line of the
tread, and by a family of straight lines orthogonal to it. Since the tread of the tyre is in contact with the
OX;X, plane, this family of straight lines is parallel to the OX;X; plane and makes and angle B, + n/2
with the OX] axis. In the contact area L, = [@;(¢), 9,(¢)] the holonomic relation

Ry(9,8,0) 13=0= r_1X3—(1 +u)sind—-vcos® =0, 9 =0+0 (1.6)
holds.
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Conditions (1.4) and (1.6) are equivalent to the following equations
X X
u = (ﬂ—g)cosﬁ+—r—35inﬁ—l, v = —(ﬂ—g)sinﬂ+-r§cosﬂ (1.7)

The position of the edge points of the tread is determined by vector field (1.1) when & = (~1)/*!
(=12

3
Ry(o, (-1)' 1) = 3 Xk + Ty (Bo)o(D)I(1 +w)e, + (1) T ir " + w)e, - ve;]  (1.8)
i=1
We will connect with the wheel disc a system of coordinates Cy,y,y; and define the radius vectors of
points of the side walls of the tyre by the relations [1]

3 3 -
Rj(p.y.1) = ZXili+r3(ﬂ)r1('<)r2(’3){(—1)jaez+Cel +bF3(\y)[m + Z vV, }
i=1 i=1 J

1 0 0 (1.9)

vel;, I;= [(-1)j+1\l’j, (_1)j+1W3—j]’ J=12, T\(x)=§0 cosk -sink
0 sink cosx

where 1);, M, M3 are the unit vectors of a toroidal system of coordinates, and a, b and ¢ are constant
quantities (Figs 1 and 2). The angles of rotation f and x of the system of coordinates connected with
the disc and the angle f in relations (1.1) are such that the quantities B, and « are small, since they
define the displacement of the tyre tread with respect to the disc due to deformations of the side walls
of the tyre. We will assume that the sidewalls of the tyre are a membrane consisting of incompressible
rubber (the Mooney-Rivlin model [2]), reinforced by inextensible steel cords, corresponding to a change
in the angle v, i.e.

JR. . . 2 . 2 .2 . ()
=122V + V) +(Va+ V) +(V=V,) +V, =0, () ===
' % 1tV 2tV 1= V2 3 v
Apart from terms of the first order of smallness in the components of the vector V and their derivatives,
the last equation can be represented in the form

Va+ V=0 (1.10)

The edges of the side wall of the tyre are joined to the disc of the tyre and to the edges of the tread,
whence we have the equations

Vo, (1Y wun = 0, Ry, (-1 = Rio, -1y, j=1,20 0 (1)
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Taking relations (1.1) and (1.8) into account, the last two equations have the form

T3 (Bo)To (N (1 +wye, + [(-1) "' 1r ! + wle, — ve,} =

_ . ’ 1.12
= F3(B)F1(K)F2(ﬁ)[(—l)’ae2 +cey +bT5((-1) l‘l’l)["ll +y Vinij:l (12

i=1

In the undeformed state, the edge of the tread and side walls coincide and the following equality
holds

re,+ (-1 1lez = (-1)ae, +ce, + Brs((-1) ypm,

taking account of which, we obtain from relation (1.12) the equations
bV (@, (1Y 'y 1) = (=1)" 1w — (1 + u)(ABcos® + Ksin®) +

+ V(APsin® — Kcos )] - é[(AB)Z +%7]
V0, (<1) gy, 1) = (—l)jr[u—%(ABcosﬂ+ Ksinﬁ)z] ¥ (L13)

+1(=1)rw - {](ABcos® + ksin®), j = 1,2
bVa(9, (-1) 'y 1) = (<1) " K(ABsin® — kcos®) ~ rv, AP = BB,

In deriving Eqgs (1.13) we took into account the constructional features of the tyre, when the angle
y is close to /2, and we correspondingly took cosy; = 0 and sinyy = 1. In (1.13) we have retained terms
of the second order of smallness in the first and second relations, while the third relation contains only
linear terms in the small quantities u, v, w, AP and k. It is necessary to take into account terms of the
second order of smallness when calculating the effect of pressure on possible displacements.

The potential energy of the stretching of the rubber in the Mooney-Rivlin model is represented by
the functional

2n
E(V] = 8[| [kl(Ic~3)+k2(IIC—3)](§+cosw)d(pd\p, m, = 1 (1.14)
0rnvi,

where k; and k, are positive constant coefficients, and I, II, and III, are the invariants of the tensor of
the finite Cauchy—-Green deformations [2]. In the case of a two-dimensional continuous medium the
Cauchy-Green tensor C, is given by the relations

R\ IR IR
dR? = (—f) do® + 25 "dody + bdy* = C,BB

a0 dop Jy
C, = €11 €12 . B= (c+bCos\|l)d(p"
cpp 1 bdy

The principal elongations A; and A, in this case satisfy the equations
2, .2
7Ll+)\«2 = C11+1, X%?\% = C“‘sz
After calculations we obtain

2b

C”=1+Y1+Y2, Y1=—m

[V} + V,siny -V, cosy]

= (V3-V;siny) Vs

S
%
|

¢+ bcosy B
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where Y, is a small second-order quantity in the components of the vector V and their derivatives. In
the three-dimensional case, the Cauchy—Green tensor is equal to C = (9R/or)’(9R/or), R = R(r, £),
and its invariants are related to the principal elongations A;, A, and A; as follows:

3 3
L= YA I=YMA, 00 = A
k=1

i<j

In the Mooney—Rivlin incompressible rubber model

2,,2, 1 2,2 7»?*‘7@
Ic = 7»1 +}\,2+—2——2, HC = ll}\,2+—2—'7, HIC =1
1/v2 17"2

Hence, the functional of the potential energy of the deformations (1.14) takes the form

2n 3
(ky + k)b ) 2
E = _— - i
[V] (J). I o bcosw{4(v3 Vi cosy + V,siny)” +
Lol

2
+ (V'2 ~ V,siny — ([9) + cosw)V;) ]d(pd\y

In region I; the angle vy is close to n/2, while in region I, it is close to —n/2, and correspondingly
cosy = 0 and siny = 1 in [; and siny = -1 in [,. These approximations will be used when calculating the
potential energy of the deformations of the rubber and the work of the pressure in possible
displacements. As a result, the functional of the potential energy of deformations of the side walls can
be represented by the expression ‘

2n 2

E[V]= | Zjk[4(v'3_(_1)fv2)2+(v'2+(—1)fv3-fv;)z]dq;dw, k=

| ; (1.15)
0J=1y

(k, +ky)b’
c

When evaluating the integrals in (1.15) one must only use the linear terms in the small quantities in
expressions (1.13), since the integrand in (1.15) is quadratic in the small components of the displacement
vector.

We will obtain the work done by the pressure making virtual displacements when the side walls of
the tyre and the tread are deformed. We have

3 12xn
84 = Y 84, 84y = p[ [IR;xR§I8R;dEde
1

k= -1 0
2 (1.16)

84, = p[ [ IR, xR;I8R,dydo, & = 1,2
1,0
Here p is the pressure in the tyre, which, as was shown previously in [8], can be assumed to be constant

when calculating its work in (1.16), apart from terms of the second order of smallness inclusive. For
the tread we obtain from (1.16)

127
84, = plr’ [ [[8U, ~ ' UT8U, + (U} + U3)8U,1dedg
~10

and further, taking relations (1.14) and (1.5) into account, we obtain

n
84, = —2plr’ [ (w - v)dude
0
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By relations (1.16) the work done by the pressure in deformations of the side walls, apart from terms
of the second order of smallness inclusive, in terms of the functions V3, V, and V5 and their derivatives,
is equal to

2n
84, = pb3jj[8\/l(g +cosy— V3 + V cosy — stin\y) - 6V2(§ + cosw)(vi -V, +

01,

+8V3(V'1+V3cosl|l)]d(pd\|l, k=1,2

We will represent the function V3(o, v, f) in the same way as previously [1], taking into account
relations (1.13) in the form of the first two terms of an expansion in a Taylor series

Va0, W, 1) = b7 [(-1)'rv+ I(ABsin® ~ kcos0) 1w + (1) y,) (W, - w,) ™,
\"E Ik’ k = 1,2

Taking relations (1.10) and (1.13) into account, we can also represent the functions V; and V, in the
form of limited expansions in Taylor series in the neighbourhoods of the points y = *y,

V, = =20 + C1YW) P, + 30y + (1Y) Py, Vi = (g + (1 y,) Py — (w + (<1 y,) Py

Py = — (=1 (W, =) Vi@, ~(= 1)y, 1) + 3091 - W) Vo0, (1), 1);
i=1 wvel

Py = (W= ¥0) Vi@, ~(= Dy, ) = 2-1) (w1 = w2) Vo, (=1 yry, );
j=2, vyel

As a result, the work done by the pressure and the variation of the potential energy when the side
walls and the tread are deformed can be represented in the form

2r
1 2 1 2 1 i 2
8A - 3E[V] = ——j [nOSM + §n015u + En“Su + znmﬁvz + inu&) +
0 (1.17)

2
+ MU' dV + My U'Ou + mpudv' + mzovBu'].d(p - %nmé}w2 - %nOSS(KZ +ABY)

The coefficients in Eq. (1.17) are found by evaluating definite integrals (by integrating over v, taking
into account the evenness and oddness of the corresponding functions). The results of these calculations
are not given here in view of their complexity. We will merely note that, taking relation (1.4) into account,
expression (1.17) is negative-definite.

The area of contact of the tyre with the OX,X, plane can be represented by a rectangle of width 2/
and length r(@,(f) — 91(¢)). We will introduce a force field, which describes the interaction between the
tyre and the plane, in the contact area. Since the tread of the tyre in the contact area is represented by
a flexible flat plate, on which the pressure acts on the inside, it is natural to assume that the normal
reaction (the component along the OXj; axis), describing the interaction of the tyre with the plane, is
equal to the pressure p. We will project the velocity field of points of the tyre in the contact area, equal
to Rs (¢, &, 1) by relation (1.1), onto the axis of the system of coordinates Oxx,x3, obtained by rotating
the system of coordinates OX1X,X; by an angle By around the OX; axis. Its projection onto the Ox;
axis is equal to zero, while the projections onto the Ox; and Ox, axes can be represented by the
expressions ’ ‘

Zy = XicosPy + XpsinBy— ro(w+ Ir7' &)
—rB[(1 + u)sin® + vecos V] + r(icos® ~ Dsin®) (1.18)

Z; = — XysinBg + X2c08By + rPol(1 + u)cos® — vsind] + r
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The work done by the forces of Coulomb friction, which act on points of the contact area, making
virtual displacement, is given in the form

1
N . . .2 =172
8A; = —fplr [ [12:82, + Z2:8Z,1Zi + 251 dod (1.19)
-1,
Here fis the friction coefficient, while in expressions 8Z; and 8Z, the velocities are replaced by the

corresponding variations.
We will represent relation (1.19) in the form

7 1
84, = ~folr[ 3 a% [ 29, & 4. 0)8q,d5do

Li=1 "'y
, EER
Z = (ZI+ZZ) ’ q = (XI’X29B0’9,M9 v’ W)
and further
7 .
_ ow(g,q,q)
8A, = - Lj Zl——a—‘g—aq,.dcp (1.20)
=

1

Wi, 4, @) = folr [ 20,6 6 00 = ’é—ff{z‘m)z'(l) - Zi-DZD) + z‘%mi‘(—‘ﬁl@}

2 0 Zi=1) + Z(=1)

Zi(£1) = Zi(9, 1,4, q), Z(*1) = Z(9,£1, 4, q)

Relation (1.20) holds when B, # 0. Otherwise the function W does not exist, since the expression in
braces and B in the denominator of the fraction vanish, and we must take

W(e, ‘.17 qQ) = 2fper|BO:0 (1-21)

In this case the contact area performs translational motion.

2. THE EQUATIONS OF MOTION
The kinetic energy of the wheel is given by the expression
3 2z 3

2 ) . .
2T = my 3 Xi + 414K+ Bcos™) + 1,8 + Bsink)’ +pr [ ¥ Zidg 2.1)
i=1 0i=1
where myg, Ji; and Jp,; are the mass and moments of inertia of the disc about the axes Cy; and Cy,
respectively. The kinetic energy of the tread and the side walls in expression (2.1) is represented by the

last term, on the assumption that the whole mass of the tyre is distributed uniformly about the centre
line. The quantities Z;, Z, are defined in (1.18), and

Z3 = X3~ rO[(1 + u)cos® — vsin®] = r(asin® + Dcosd) (2.2)

The equations of motion and the conditions on the boundary of the contact area, unknown in advance,
are obtained from the Hamilton-Ostrogradskii variational principle. To do this we will obtain expressions
for the work done by the external forces and moments applied to the wheel disc (Fig. 1), making virtual

displacements, namely
8Ap = F(B)SX, + F(B-n/2)8X, - P8X,+ M,3K + M,50 + (M,sink + M,cosk)p

F(B) = FicosP - F,sinp
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We will use as the constraints for points on the centre line of the tread [ the condition for it to be
inextensible (1.4), represented in the form.

27y = (L+u+v) +(~v) = 1 (2.3)

Correspondingly, when releasing from these constraints, we must bear in mind their work done on

virtual displacements
2n

3N, = j Mo, 1)8Zydo
0

where A is an undetermined Lagrange multiplier.
We will represent the Hamilton—Ostrogradskii variational principle in the form

L)
I[ST +0A;+B8A-0E+08A,+38N,+ Iu3(¢, t)SZ3d(p}dt =0 (2.4)
b L

Variation 8Z; corresponds to holonomic constraint (1.6) or (2.2), while the factor ys(¢, f) is the normal
component of the reaction of the constraints, reduced to unit length of the tread in the contact area.
The corresponding variables in Eq. (2.4) are 2rn-periodic in the variable ¢, and the region of integration
[t1, ;] © [@1, @1 + 2m] in relation (2.24) is divided by the curve @ = @,(¢) into two parts, [z, t,] U Ly
and [t1, ] U Ly (Ly = [0,(F), 27 + ¢1(F)]. We apply Green’s formula to each of these and obtain a system
of equations and conditions imposed on the jump at the boundary points of the contact area

d

- d T
-5V T- jVXle<p+F([3) = 0, —EVXZT_J'VXZWd(p_',F(ﬁ__z_) <0

L, L

d
-2V TP+ [us(.)dg = 0
Ll

—(%VBT+ M,sink + Mycosk - ngsAB = 0

_4

d
TV T +mosAB - jVBOWd(p =0, VIT-=V.T+M,-nuk =0

dt
Ll

4 22,
Vol — 2V, T + Mz—ifv(,wd(p + !!—%ggdq’ =0
1 1

v, T- ‘%VWT - r2n03w - I V., Wdp =0
L (2.5)

VuT—c%VdT—no—nmu+n“u"—(m21-mzo)v'—Van((p)+ :
+A(1+u+ V) - [A(u' - V)] - rusx(9)sin® = 0
VUT—‘%VﬁT—”ozv‘F”12“"*(mlz“moz)u"VoWX((P)—
(A1 +u+ V)] -A(u - V) - riyx(@)cosd = 0

proLil @+ [ny o —Mu' =), = 0, k = 1,2

prI0Lge+ [npV - M1 +u+0)], =0, k=1,2
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Here [f(0)]x = f(% + 0) —f(0 — 0), O = 8 + @ is the jump in the function at the final point of the
contact area. The function (o) takes the value of unity if ¢ € L4, and zero if ¢ € L,. In the last condition,
relating the jumps in (2.5), the function

®
v=-u and b= —jdd(p + (1,0)
0
apart from small first-order terms. Then [8'], = [0]x = 0 and [A], = 0, i.e. the tension of the centre

line of the tread does not undergo jumps at the boundary points of the contact area. We will represent
the penultimate condition, relating the jumps in (2.5), in the form

Pl + (ny - M)W, = 0, k= 1,2 (2.6)

The remaining 10 equations in (2.5), together with the two conditions imposed on the jumps (2.6),
and the holonomic constraints (1.6) and (2.3), form a closed system of 14 equations in 14 unknowns:
X1>X27 X37 ﬁOv [37 K 97 W, U, 0, Qr, O, ;"7 Ms.

3. THE MOTION OF A LOCKED WHEEL

We will consider the two simplest modes of slipping of a locked wheel. We will assume that the contact
area of the wheel with the plane OX,X, moves forward with constant speed, namely, X; = = Vcosy,
X, = Vsiny, X, B, Bo, &, 6, w, u(9), v(9), ©1, ¢2, M), H3(¢) are constant quantities. Equations (2.5) in
the case considered becomes essentially the conditions of equilibrium of a mechanical system with respect
to a system of coordinates connected with the disc of the wheel and which translates with constant speed.
We obtain these conditions from (2.5) by substituting into them functions corresponding to the steady
mode. Note that

VW= 2fl 3. 2fplr]:(X cosB0+ngmBO) +( XysinBy + XzcosBy) aiz]

i H

As a result we obtain the following system of equations

~2fplrV " X1(9, - @,) + FycosB ~ F,sinB = 0
~2fplrV' Xp(@, - ©,) + FysinP + F,cosB = 0

P = [13(0)dg, Mysink + Mycosk = ngsAB = 0, M, = ngsk
Ll

My + 2fplrV ™" X3( X cosBy + X,sinBo)(@, - ¢,) - [nsreosvde = 0 )
L, :

RyW + 2fpr'1(- XysinB, + chos[io)(cp2 -@0;) =0

Ny (u, ©) = 2 fplr V' (X, cos By + XasinBo)x(@)cos® + M, (u, 0) - rix(@)sin® = 0
Ny (u, 0) + 2 fplr* V(X cos By + XasinBy)x(9)sin® — M_(u, v) - rityx (@) cos® = 0
(n =Ml =0, k=1,2
Here
Ny(u, V) = —ng—ngpu+nyu" = (my ~my)v', M, (u,0) = M1 +u+ V) - [Au' - v)]
Ny(u, V) = —ngpU+npV" —(my —me)u', M_(4,0) = [M1+u+v)]'+A(u' -v)

It follows from relations (3.1) that the angle B = f,. Without loss of generality, we can take B = 0.
The first two relations of system (3.1) can then be represented in the form

Fy = 2fplr(9, - @)cosy, F, = 2fplr(@, — @,)siny
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Further

My = npsx, M; = -M,tgx, w = ‘ZfPISi“Y”E;((Pz—(Pl)

The equations which define the components of the displacement vector of points on the tread u(¢)
and v(¢) in the contact area and outside it, take the form:

when @ e Ly
Ni(u, v) + 2fplr2cosYsin(p + M, (u, V) -ritycos9 = 0
Ny(u, 0) + 2 fplr’cosycos@ — M_(i, 0) + ri,sing = 0 42
when @ € L,
Ni(u, )+ M (u,v) =0, Ny(u,v)-M (u,v) =0 3.3)

In Egs (3.2) the angle 6 under steady conditions is taken to be n/2. In Eqs (3.3) we put A = rg + Ay,
where A, is a small quantity, and we linearize the system obtained. We have

— Rt + 1y U = My — M)V + Ay —ng(u' = v) = 0
, 34
—n021)+ nlzv"—(mlz“moz)u"—xl"no(u"—v) = O, U+ I)' = 0

The last equation in system (3.4) is the linearized condition for the centre line of the tread of the
tyre to be inextensible (2.3).
We eliminate the unknowns # and A, from Eqs (3.4) and obtain the equation

4 "
aov( )+alv +a,v =0

ag = ny~npg>0, a; = my +my—myy—my,—ng —2n5—-nyy, ay = ng—ng>0

the general solution of which in the section L, = [¢,, 2r + ¢;] has the form (everywhere henceforth

summation is carried out from k = 1 to k = 4)
[2
J"‘ al i al —4aoa2 (3.5)

V(@) = Y (@), Y. (0) = Y Cexp(py9), py,. 4=

200
where C, ... , C4 are arbitrary constants. The function u,(@) in the section L, is equal to
1 (9) = —0y(@) = =3 (9), D.(9) = Y Cypexp(pi®) (36)

In the contact area L, = [y, ¢,] the functions u;(¢), v1(¢) are defined by relations (1.7), which, taking
the equality 0 = n/2 + ¢ into account, can be written in the form

u; = —@QsinQ + X3r_1cos(p— 1, v, = -@cos@— X3r‘1 sin@ 3.7
Since the angle @ is small in the contact area, linearization of relations (3.7) leads to the equalities
uy = Xy =1, v = —@(Xsr '+ 1) (3.8)
The conditions which relate the jumps at the boundary points of the contact area, have the form
u(@p) = Uy (2 + @), ui(9)) = uy(9y), V(@) = V2T + @), V(P) = Vx(9,)
and, taking relations (3.5), (3.6) and (3.8) into account, can be represented in the form
Xsr_l -1= —zu((Pz) = —chl’k’ X3’_1 -1 = “ZM(ZR +0,) z—Zu(Zn)

_ (3.9)
Xy +1) = T (0) =Y Co —o(Xpr +1) = Y Cn+g) = (27)
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From Egs (3.9) we determined the coefficients C), ... , C; and then, the functions v,(¢) and ux(¢)
in the form

Uy(9) = Y Diexp(p@),  ux(9) = =Y Dypyexp(p9)
D, = dy,9, +d2k‘P2+d3k(1‘Xsr_l)

The expressions for the coefficients dy, (s = 1,2, 3; k = 1, ..., 4) are not given here in VleW of their
complexity. We merely note that, on the left-hand sides of Egs (3 9) the coefficient 1 + X3r" = 2. From
the first relation of (3.4) we obtain

Ay = 0"(nyy = ng) + U (myy — Mgy~ ng—ng;) =
2
= Y Dypiexp(p@)(nyg — o) p + (myy — mag ~ng— ng; )|

Hence, we have found the Lagrange multiplier A = ng + A, the value of which determines the tension
of the centre line of the tread outside the contact area. The Lagrange multipliers A and 3 in the area
of contact of the wheel with the plane are determined from the first two equations of system (3.2), taking
expressions (3.7) into account, in the form

N = = 2fplricosy + [ng + 3n,; — 2(myy — Myg) — 21y, — 40y, — 3(myy — mgy) 10 .10
My = —ng— 3Ry, + 2(my, — my) + gy (1= X3r™")

In expressions (3.10) we have retained terms of the zeroth and first order of smallness after calculating
the derivatives of the functions represented in (3.7). The multiplier s, according to (3.10), is a constant,
apart from terms of the second order of smallness, while the tension in the tread in the contact area
varies linearly. The force P and the moment M,, which act on the wheel disc, can be found from system
(3.1), apart from small first-order terms, in the form

P = r_l[__no_3n11 + 2(m21 _m20)]((p2_.(p1)
M, = —rP(Q, + 0,)/2 - 2 fplrX;cosY(9, — 9;)

The relations obtained enable us to determine all the characteristic steady modes of slipping of the
wheel with a tyre, namely, the relations between the forces, moments and functions describing the
deformation of the tyre, and the generalized coordinates characterizing the translational motion of the
wheel disc.

The second steady motion of the locked wheel with slipping is defined as spinning with constant angular
velocity around the axis CX;, when

X, =X, =0, X;=const
Bo=P = =const, kK = const, w =0, 8§ = /2, ¢, = -, = const, M@), ()

In this case of steady motion, the work done by the forces of dry friction making virtual displacements
can be represented in the form

' 2 e +0Z,e
—fplrJ' J.[e3><( r(pe,+l§e2)] 21 22

—0r- NI §2+ 2(‘)2

8Z; = 86X, cosPy+8X,sinPy— dBylE — X380 - Sursing — Svrcos@

34, dodt sign o

8Z, = —8X;sinBy + 8X,cosBy — 8Pyre + Swr
and further

P 1
84, = ~fpir [ [NI'E® + o dodEdBysignfo~ -2 pirg, I’ + rPoloBosignfo  (3.11)

~P,-1
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The integral in (3.11) is equal to the sum of four integrals, which can be evaluated approximately by

replacing the integrand by \ 2 + ¢3/2. In fact, this replacement indicates that the friction force field
in the contact area is replaced by four friction forces, applied at points with coordinates & = +1/2,

¢ = @2
System of equations (2.5) can be transformed into the following system

F(B) =0, F(B—g) =0, P= JH3(¢)d¢’ "2"03“’ =0

L

M,sink + M;cosK - nyAB = 0, nOSAB—prlr(pz./lz+rztpgsignﬁo =0

3.12
(JZd-—Jld)(OZCOSKSinK‘+ Ml "”05]( = 0, MZ_ J[.lg'r(pdq) =0 ( )

L

3 2 3 2 M " \]
Pro@ (1 +u)sin” @+ vSiNQCOSQ] — 1y — ngyu + 1y u" — (My; — Moyp) V' +

+AM1+u+ V) —[Mu' - )] - ryx(@)cose = 0
pr3m2[(1 + u)sin@cos @ + vcosch] — N V+ RV —(myy —mgp)u' —
(AL +u+ V)] - Mu' - v) + riy (@) sing = 0

From Eqs (3.12) we can determine the relations between the parameters of motion and also the forces
and moments required to achieve spinning

Fi=F, =0, M| =nk+(Jy~Jp)0 sinkcosk, M, = 0

Mscosk = ngsAB, w = 0, AB = 2fplrngig,JI* + r*¢>signPo

Note further that the functions ps(@), A(¢), u(¢) are even, while the function v(¢) is odd. The
approximate equations u = r‘1X3 -1, u =3¢, u"=-3,v=-20, v =-2, V" =4 follow from formulae
(1.7) in the contact area L,. Using these equations, we obtain from the last two equations of system
(3.12)

ris = —n0+n01(1—r_1X3)+2(m21—m20)—3n“
. 3 2
A=[pro =2ngy —4n ) —3(myy —my) + ny+ 30y — 2(Mmy — myy) 1@

With the accuracy assumed above, we can determine the relation between the value of the contact
area and the vertical force

P = 20,1, = 2‘P2r—l[“ g + 2(my; = myp) = 3ny]

To determine the form of the deformed tread it is necessary to obtain a solution of the last two
equations of system (3.12), taking into account the conditions imposed on the jump at the boundary
points of the contact area [A], = 0, [v']x = [u']x = 0. The solution of this problem is in many ways similar
to the solution of the problem of determining the form of the tread in the case of the translational motion
of a wheel with a constant speed. If we put © = v = 0 in these equations in the terms containing
centrifugal forces of inertia (the terms with ®?), and assume A = ny— prro® + A, then after eliminating
u and A, from the system of linear equations obtained, we derive the equation

bov(‘” +b v+ by = %pr3w2sin2(p (3.13)
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- 3 2
nll—n0+pr ()]

=
(=)
|

3 2
by = my +myy—myg—my;—ng —n—2ny+2pr°®
b, = 3 2

7 = n02~n0+pr ()]

We obtain a particular solution of Eq. (3.13) in the form
3 -1
v, = ipr3m2(16b0—4b1 +b,) 1sm2(p

while the general solution of homogenecous equation (3.13) v, has the form (3.5) with modified
coefficients p, and symmetrical boundary conditions when @; = ~¢,. Correspondingly, the modified
coefficients Cy, ... , C4 are found from a system of equations of the type (3.9)

1~ Xyr ' = 3pr 0’ (16by~4b, + b,) " = ¥ Cipr = Y. Cubrexp(2mpy)
~0y[2+3pr @ (16by~4b; + by) 1= ¥ Ce= - Crexp(2npy)
in the form
Ci = €0y + €[ 1= Xar ' =3pro’(16by—4b, +b,)'], k= 1,..,4
with the condition that
3pr @’ (16by ~ 4b, + by) ™ < 2

Expressions for the coefficients ey, (s = 1,2;k = 1, ..., 4) are not given here in view of their complexity.
The shape of the deformed tread outside the contact area is symmetrical about the plane Cy;y, and is
described by the functions

(@) = V@), V(@) = 3pr’@’(16by—4b, +by) 'singcosp+ Y Crexp(5,9)

The correction A,(¢) to the tension of the tread outside the contact area is found from the penuitimate
equation of system (3.12) taking the functions u,(¢) and v,(¢) obtained above into account. We have
thus completed the determination of all the steady-spinning characteristics and the forces and moments
required to obtain it.
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