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A previously proposed model [1] of a wheel with a reinforced tyre in which the side walls of the tyre are represented by reinforced 
membranes consisting of incompressible rubber, in accordance with the Mooney-RMin model [2], is considered. When the tread 
is deformed, the exact non-linear conditions for the inextensibility of the reinforcing cords are taken into account, unlike the 
conditions in the linearized form used previously in [1]. A potential-energy functional of the deformed tyre as a function of the 
deformations of the centre line of the tread and the displacements of the wheel disc, which has six degrees of freedom, is obtained 
using a number of hypotheses. A complete system of equations is derived and the conditions imposed on the sudden jumps in 
the functions describing the deformation of the tread at the boundary points of the previously unknown area of contact of the 
tread with the plane when there is slipping is obtained using a model of dry friction. Two steady modes of motion of the locked 
wheel are investigated: rectilinear translational motion at a constant speed and spinning around an axis orthogonal to the rolling 
plane of the wheel with constant angular velocity. © 2005 Elsevier Ltd. All rights reserved. 

A criterion for the transition from the mode in which the wheel is spinning and slipping to the mode 
in which spinning occurs without slipping was proposed in [3]. The dynamic interaction between 
deformable rigid bodies was investigated in [4-7] using a model of dry friction. 

1. M O D E L L I N G  O F  A W H E E L  W I T H  A R E I N F O R C E D  T Y R E  

We will assume that the wheel with the reinforced tyre consists of a disc (0) (a rigid body), joined to 
the side wall of the tyre (1, 2), which is represented by the parts of two tori, and a tread (3), reinforced 
with inextensible steel cords (Fig. 1). We will introduce a fixed system of coordinates OX1X2X3 (the 
wheel is in contact with the surface OXIX2) and a moving system of coordinates CX1X2X 3 with origin at 
the mass centre of the disc at the point C. The radius vector of a point on the tread is defined in the 
form 

3 I 3 1 R3(q0, ~, t) = 2 Xili + rr3(13o)F2(0 + ~0) e 1 + lr-l~e2 + 2 gi(lP' ~' t)ei 
i=1 i=1 

cos  0 sin011 cos  si00 
F2(0) = 0 1 0 , F3(13) = sinl3 cos~ 0 , qornod2/t 

-sin0 0 cos0 0 0 l I~f<-I 

0.1) 

where )(1, X2 and X3 are the coordinates of the mass centre of the disc. Ii is a unit vector of the axis 
OX/, 13 0 and 0 are the angles of rotation about the axes 0)(3 and Cx2 respectively, e> e2 and e3 are unit 
vectors of a cylindrical system of coordinates, r and 2/are the radius and width of the tread, and Ut, 
U2 and U3 are the components of the displacement vector of a point on the tread in a cylindrical system 

tPrikL Mat. Mekh. Vol. 68, No. 6, pp. 1010-1024, 2004. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2004.11.013 
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Fig. 1 

of coordinates. The tread consists of a rubber strip, reinforced by steel cords, for which the conditions 
for inextensibility, represented by the equations 

( )R 3 ~R3  ~R31 
= 1, cosTo/-~-~ -+ sinTor-~] 

and the equivalent equalities 

= 1, To = const 

1-'R~ o 02 ~{) = l ~ 2 1 r - l U 2 +  ~ U k  = 0 ;  (.)° = - -  
k = l  

[r-lR'31 = 1 ~ 2 ( U  1 - U~) -I- ( U  1 - U~) 2 + U2 2 + ( U  i + U3) 2 = 0 

R~" R' 3 = 0 ~ U~(U~ + U3) + ( lr - '  + U~)U' 2 - U~(1 + U 1 -- U3) -- O; 

(1.2) 

( ) ' =  a~o 

are satisfied. 
We previously [1] considered linearized relations (1.2), from which we obtained formulae expressing 

/]1, U2 and U3 as functions of the displacements of the centre line of the tread u(% t), a)(% t) and 
w(% t), namely 

U ! = l r - l~w"+ u, U 2 = w, U 3 = I rq~w ' -  v (1.3) 

If relations (1.3) are substituted into the exact conditions of inextensibility and orthogonality of  the 
filaments of the cord, it turns out that the function w depends only on the time and w' = w" = 0, while 
the functions u and t) satisfy the condition that the middle cord of the tread is inextensible 

2 ( u +  o ' ) + ( u +  o ' ) 2 + ( v - u ' )  z = 0 (1.4) 

Hence, equalities (1.3) take the form 

U I = u(cp, t), U 2 = w( t ) ,  U 3 = -o(cp, t) (1.5) 

The result obtained expresses the fact that the surface of the circular cylinder (the undeformed tread) 
when the cord is inextensible and orthogonal, corresponding to a change in the coordinates ~ and % 
is isometric with a cylindrical surface with generatrix specified by the deformed plane centre line of  the 
tread, and by a family of straight lines orthogonal to it. Since the tread of the tyre is in contact with the 
OXIX 2 plane, this family of straight lines is parallel to the OX1X 2 plane and makes and angle I]0 + re/2 
with the OX1 axis. In the contact area L 1 = [~01(t), q)2(t)] the holonomic relation 

R 3 ( c p , ~ , t ) . l s = O ~ r - l X 3 - ( l + u ) s i n O - v c o s O  = 0, O = 0+~p (1.6) 

holds. 
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Conditions (1.4) and (1.6) are equivalent to the following equations 

( X )  2 X3 1, o ( 0 -  2)sinO + X3cosO (1.7) u = 0 - _ -  cosO+ s i n O -  = -  
r r 

The position of the edge points of the tread is determined by vector field (1.1) when { = (-1) j+l 
(j = 1, 2) 

3 
R3(qL ( - l  )J + l, t) = ZXi l i+rF3(~o)F2(O)[ ( l+u)e l+( ( -1 )J+ l l r - l+w)e2 -ve3]  (1.8) 

i=1 

We will connect with the wheel disc a system of coordinates CylY2Y3 and define the radius vectors of 
points of the side walls of the tyre by the relations [1] 

Rj(Ip, ¥ ,  t) = ~ X,!  i + r3(13)rl(~)r2(o) ( - 1 ) J a e 2  + ce  1 + bF3(~l/) 1111 + Z Villi 
i=1 i=1 

~j+ 1 ~ l j ,  lj = [(-1)J+]¥j , ( - l )  IIt3_j], j = 1,2, Fl(l¢) = 
1 0 0 

0 cos ~ -sin 

0 sin~: cos 

(1.9) 

where "ql, '11~2, 'Ill3 are the unit vectors of a toroidal system of coordinates, and a, b and c are constant 
quantities (Figs 1 and 2). The angles of rotation 13 and ~c of the system of coordinates connected with 
the disc and the angle 130 in relations (1.1) are such that the quantities 13-130 and ~: are small, since they 
define the displacement of the tyre tread with respect to the disc due to deformations of the side walls 
of the tyre. We will assume that the sidewalls of the tyre are a membrane consisting of incompressible 
rubber (the Mooney-Rivlin model [2]), reinforced by inextensible steel cords, corresponding to a change 
in the angle V, i.e. 

a R j  2(vl + v l )  + ( v 2  + v ] )  z z • a(-) = 1 ~  + ( v l - v 2 )  +v;  ~ = o ,  (.) = av  

Apart from terms of the first order of smallness in the components of the vector V and their derivatives, 
the last equation can be represented in the form 

v~ + v, = o (1.1o) 

The edges of the side wall of the tyre are joined to the disc of the tyre and to the edges of the tread, 
whence we have the equations 

V(tp,(-l)J+t~F2, t ) = 0, R3(tp,(-1)J+1, t) = Rj( tp , ( - l )J+l~], t ) ,  j = 1,2 (1.11) 
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Taking relations (1.1) and (1.8) into account, the last two equations have the form 

rF3(~0)F2(O){(1 + u)e t + [(-1)J+llr-I  + w]e 2 -  1)%} = 

= F 3 ( ~ ) F ' I ( I ~ ) [ ' 2 ( O  ) (-1)Jae2+cel+bF3((-1)J+ll[ll) 1111+ Villi 
i 

(1.12) 

In the undeformed state, the edge of the tread and side walls coincide and the following equality 
holds 

re I + ( - l ) J+ l l e  2 = (-1)Jae2 + ce 1 + bF3(( -1)J+l~ l ) l l l  

taking account of which, we obtain from relation (1.12) the equations 

bVl(9,(_l)j+l , t )  = ( -1)  j + l r [ w - ( l + u ) ( A [ 3 c o s O + ~ r s i n O ) +  

+ v(A~sinO - ~:cosO) ] - / [ (AI~)  2 + IC 2 ] 
z; 

b V2((p, (-1)J+ 'v,, t) = (-1)Jr[u-~(A~cosO + ~sinO)2] + (1.13) 

+ [ ( -1 ) J rw- / ] (A~cosO + ~sinO), j = 1, 2 

bV3(cp, (-1) j+ I l l l l ,  t) = ( -1)  j+ l /(Al3sinO- KcosO) - rv, A[3 = 1~ - [3o 

In deriving Eqs (1.13) we took into account the constructional features of the tyre, when the angle 
iF1 is close to r~/2, and we correspondingly took costa  --- 0 and sin~l = 1. In (1.13) we have retained terms 
of the second order of smallness in the first and second relations, while the third relation contains only 
linear terms in the small quantities u, a), w, AI3 and ~:. It is necessary to take into account terms of the 
second order of smallness when calculating the effect of pressure on possible displacements. 

The potential energy of the stretching of the rubber in the Mooney-Rivlin model is represented by 
the functional 

2~ 

E[V] = b2I  ~ [kl(Ic-3)+k2(IIc-3)]Cb+COsq)d~pd~, 
0 I l ~ 12 

III c = 1 (1.14) 

where kl and k2 are positive constant coefficients, and I~, IIc and IIIc are the invariants of the tensor of 
the finite Cauchy-Green deformations [2]. In the case of a two-dimensional continuous medium the 
Cauchy-Green tensor C 2 is given by the relations 

dR 2 = ("~)(~RJ~ 2 . 2 ~Rfi)Rj~ atp + 2 atp allldtpdv +b2d~2 = C2BB 

The principal elongations ~,1 and £2 in this case satisfy the equations 

2 
X,~ + ~2 = cn + 1, ~ . ~  = el l -¢12 

After calculations we obtain 

2b [V' cH = I+YI+Y2,  Y1 = c + ~ c o s ~  3+V2siny-Vlc°s~] 

c12 = (V, 2 -  V3sinllt)c b - V3 
+ bcos~ 
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where Y2 is a small second-order quantity in the components of the vector V and their derivatives. In 
the three-dimensional case, the Cauchy-Green tensor is equal to C = (0R/0r)T(0R/0r), R = R(r, t), 
and its invariants are related to the principal elongations ~,1, L2 and 7~3 as follows: 

3 3 

ic X~,~ ' ii c Z 2 2 ,2,2,)2 = = ~'i ~ ' j '  III¢ = "-1"2"3 
k = 1 i < j  

In the Mooney-Rivlin incompressible rubber model 

~2 2 
2 2 1  

Ic = )q+~'2+a-~2'  IIc = A ' I A 2 +  2 2 ' 

"~' I "u2 ~ 1 ~2 

III c = 1 

Hence, the functional of the potential energy of the deformations (1.14) takes the form 

2re ( k l  + k 2 ) b 3 1  - , 

EtV) = J" j" 7  7 -NsvL4(V - v, cosg + V siag)2+ 
0 / I u l  2 

+ (V'2-V, s i n g - ( b  + cosg)V;)2]dtpdg 

In region 11 the angle g is close to x/2, while in region 12 it is close to -n/2, and correspondingly 
cosg -- 0 and sing = 1 in 11 and sing -~ -1 in 12. These approximations will be used when calculating the 
potential energy of the deformations of the rubber and the work of the pressure in possible 
displacements. As a result, the functional of the potential energy of deformations of the side walls can 
be represented by the expression 

2x  2 

EtV  = / Z Ik[4(v'3-(-l,,V:)2 (v'2+ + (- l ),v3 - ;;)2jr d d¥, - < +<'b3c 
o j = l l j  

(1.15) 

When evaluating the integrals in (1.15) one must only use the linear terms in the small quantities in 
expressions (1.13), since the integrand in (1.15) is quadratic in the small components of the displacement 
vector. 

We will obtain the work done by the pressure making virtual displacements when the side walls of 
the tyre and the tread are deformed. We have 

3 1 2 x  

8A = Z ~ak' ~Z3 = p l I [R'3 x R~]SR3d~dq0 
k = l  - I 0  

2n 

~a k = p f  I[R'kXR'k]SRkdgdtp, k = 1,2 
1~ 0 

(1.16) 

Herep is the pressure in the tyre, which, as was shown previously in [8], can be assumed to be constant 
when calculating its work in (1.16), apart from terms of the second order of smallness inclusive. For 
the tread we obtain from (1.16) 

1 2~ 

8A 3 = plr? [. [ [SU, - rlqU~SU2 + (U' 1 + U3)SU3]d{d ~ 
-1 0 

and further, taking relations (1.14) and (l.5) into account, we obtain 

2x 

~ A  3 = -2plr 2 f (u' - o)Su'd~ 
o 
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By relations (1.16) the work done by the pressure in deformations of the side walls, apart from terms 
of the second order of smallness inclusive, in terms of the functions V1, V2 and 1/3 and their derivatives, 
is equal to 

2n 

(b c o s ~ -  V2sin ~ ) ( b  cos~)  ~A k = pb3S~[~V, + V' 3+ VlCOS~/- - ~ V  2 + ( V ; - V 2 ) +  

oq 

, )] + ~V3(V l + g3cosll I dgM~, k = 1, 2 

We will represent the function 1/3(% % t) in the same way as previously [1], taking into account 
relations (1.13) in the form of the first two terms of an expansion in a Taylor series 

V3((p, ~1/, t) = b -1 [ ( -1  )krl) + l(A13sinO - ~cos0) ] (~  + (-1)k~/2)(~/1 - ~/2) -1, 

~ I k, k = 1,2 

Taking relations (1.10) and (1.13) into account, we can also represent the functions Va and V2 in the 
form of limited expansions in Taylor series in the neighbourhoods of the points ~ = ---~2 

= j 2 " 2 j 3 
V 1 - 2(ltt + (-1)JlII2)P! + 3(llt + (-1) lit2) P2, V2 = 0l t + (-l)S~l/2) Pl - (lit + (-1) 11/2) P2 

P1 = - ( - 1 ) J ( ~ l  - ~2)  -~ VI(~P, - ( - 1  )J~¢l, t) + 3 ( q l  - ~ /2 ) -2  V2(q) ,  - ( - l  )J~I/l, t); 

j =  1, ~ I  l 

P2 = (¥1 -~!/2)-2 V I ( % - ( - 1 ) J ~ l ,  t) -2 ( -1 ) J (~1  - ~l /2)-3V2((p,-(-1)J¥i  , t ) ;  

j = 2, ~ E I  2 

As a result, the work done by the pressure and the variation of the potential energy when the side 
walls and the tread are deformed can be represented in the form 

2rt 
f [  1 2 1 e ,2 1 ~ 2 + 1 ~. ,2 6 A - ~ E [ V ]  + 

o (1.17) 
2 

+ml2u'~)D+m21D'~u+mo2u~D'+m2OD~U']dlP-2nO3~W21- ~ n05~(l~ 2 + A132) 

The coefficients in Eq. (1.17) are found by evaluating definite integrals (by integrating over % taking 
into account the evenness and oddness of the corresponding functions). The results of these calculations 
are not given here in view of their complexity. We will merely note that, taking relation (1.4) into account, 
expression (1.17) is negative-definite. 

The area of contact of the tyre with the OXIX2 plane can be represented by a rectangle of width 2/ 
and length r(cp2(t) - ~pa(t)). We will introduce a force field, which describes the interaction between the 
tyre and the plane, in the contact area. Since the tread of the tyre in the contact area is represented by 
a flexible fiat plate, on which the pressure acts on the inside, it is natural to assume that the normal 
reaction (the component along the OX3 axis), describing the interaction of the tyre with the plane, is 
equal to the pressurep. We will project the velocity field of points of the tyre in the contact area, equal 
to R3 (% ~, t) by relation (1.1), onto the axis of the system of coordinates OXlX2X3, obtained by rotating 
the system of coordinates OX1X2X3 by an angle 130 around the OX3 axis. Its projection onto the Ox3 
axis is equal to zero, while the projections onto the Oxl and Ox2 axes can be represented by the 
expressions 

21 ----- XlCOS[~ 0 + .~2sin[~ 0 - r~o(w + lr-l~) - 

- r0[(1 + u)sinO + vcosO] + r(ucosO - bsinO) (1.18) 

Z2 = - Xlsin[30 + X2cos~ 0 + rl~0[(1 + u ) c o s O -  vsint~] + rw 
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The work done by the forces of Coulomb friction, which act on points of the contact area, making 
virtual displacement, is given in the form 

I 

= Z21 dtpd~ 
- l  L I 

(1.19) 

Here f is the friction coefficient, while in expressions 8Z1 and 5Z2 the velocities are replaced by the 
corresponding variations. 

We will represent relation (1.19) in the form 

7 1 

~A£=- fp l r I~ l~ i !Z (~p ,~ , ( l , q )Sq id~d~  p 
Lli= 

, ,..~2 .2 1/2 
2 = ( z z + Z 2 )  , q =  (Xl, X2,130,0, u ,v ,w)  

and further 

7 

SAy = - I  ~. 3W(q~' il' q)sqidtP 
Lmi= 1 

(1.2o) 

l . , 

W(cp,/I, q)= fplr~ Z~(~p, ~, q, q)d~ = ~or{Zl, l)*, l)-  Z,,,-I)Z,,-I) + Z,21n .Zl(1) + Z.(1). l 
-I Zl(-1) + Z(-1)J 

21(+1) = 2z(tp, +l, q, q), 2(_+1) = 2 ( % + l , q , q )  

Relation (1.20) holds when ~0 ~ 0. Otherwise the function Wdoes not exist, since the expression in 
braces and ~0 in the denominator of the fraction vanish, and we must take 

W(~, tl, q) = 2fplrZl~ ° = o (1.21) 

In this case the contact area performs translational motion. 

2. THE EQUATIONS OF MOTION 

The kinetic energy of the wheel is given by the expression 

3 2re 3 

.2 2  sin,,f+prj 2T = m d E  Xi + J l d ( l (  + ~ 2 c o s 2 1 ( )  + J2d(O + E 
i = 1  0 i = 1  

(2.1) 

where rod, Jld and J2d are the mass and moments of inertia of the disc about the axes Cyl and Cy 2 
respectively. The kinetic energy of the tread and the side walls in expression (2.1) is represented by the 
last term, on the assumption that the whole mass of the tyre is distributed uniformly about the centre 
line. The quantities Z1, Z2 are defined in (1.18), and 

23 ---- X3 - r 0 [ ( l  + u)cosO- osinO] "r(tisinO + bcosO) (2.2) 

The equations of motion and the conditions on the boundary of the contact area, unknown in advance, 
are obtained from the Hamilton-Ostrogradskii variational principle. To do this we will obtain expressions 
for the work done by the external forces and moments applied to the wheel disc (Fig. 1), making virtual 
displacements, namely 

6A F = F(~)fiX l + F(~J - n/2)~SX 2 - P6X 3 + MI~K + M2~0 + (M2sin~c + M3coslQ8 ~ 

F(I~) = FI cosl3 - F2sinl3 
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We will use as the constraints for  points on the centre  line of  the t read l 0 the condit ion for  it to be 
inextensible (1.4), r epresen ted  in the form. 

2Z 0 = ( l + u + u ' ) 2 + ( u ' - o )  2 = 1 (2.3) 

Correspondingly,  when releasing f rom these constraints,  we must  bear  in mind their  work done  on 
virtual displacements 

2n 

8N o = ~ ~((P, t)SZod(P 
0 

where  ~ is an unde t e rmined  Lagrange multiplier. 
We will represen t  the Hami l ton-Ost rogradski i  variat ional  principle in the form 

~T + ~A F + 8A - 5E + 5A I + ~N o + f g3(q~, t)~Z3dl p dt = 0 (2.4) 

t l~- L I 

Variation 8Z3 corresponds to holonomic  constraint (1.6) or (2.2), while the factor ~t3(q~, t) is the normal  
componen t  of  the react ion of  the constraints,  reduced  to unit  length of  the t read in the contact  area. 
The  corresponding variables in Eq. (2.4) are 2n-periodic in the variable % and the region of  integrat ion 
[tl, tz] w [cpl, q01 + 27r] in re la t ion (2.24) is divided by the curve q0 = q32(/) into two parts, [q, t2] u L1 
and [fi, t2] u L 2 ( L  2 = [¢pz(t), 2rt + Cpl(t)]. We apply Green ' s  formula  to each of  these and obtain a system 
of  equat ions  and condit ions imposed on the jump at the boundary  points of  the contact  area 

J t V x  T - ~ V x  Wd~p+ F(~) = O, --d-tVxzT - ~Vx2Wdtp+ F ~ -  = 0 
L1 L l 

-dVx3T-P+ ~ t 3 ( q o ,  t)dc p = 0 

Ll 

d 
~tVf~T + M2sin~ + Macos~¢ - nosAl3 = 0 

d t v •  T + nosA[~ - d ~o ~ V~oWdtp = 0, V ~ T -  ~ V t T  + M 1 - n051~ = 0 
Ll 

, oz _ 
- + J g a - - ~ - a v  = 0 

LI L l 

d 2 
V w T -  ~tV~oT - r no3 w - [ V~Wdg~ = 0 

Ll  

d 
V u T -  ~'tV aT - n o - nolu + nllu" - (m21 -- m20) O' - VaWx((p) + 

+ ~,(1 + u + v') - [~ . (u ' -  11)]'- rg3z(q3)sinO = 0 

d 
V v T -  - ~ t V v T -  n02 O + n 1 2 1 )  '' - (m12 - mo2)U' - V b W ~ ( t p )  - 

- [~.( 1 + u + o')] '  - ~.(u' - v) - r~3X(tp)cosO = 0 

pr3[u]k(Pk+[nllU'--~(U'--V)]k = 0, k = 1,2 

p r 3 [ b ] k ( p k + [ n l 2 0 ' - ~ . ( l + u + l l ) ] k  = 0, k = 1,2 

(2.5) 
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Here  [f(O)]k = f(Ok + 0) -f(O~ - 0), Oh = 0 + % is the jump in the function at the final point of the 
contact area. The function Z(cp) takes the value of unity if q0 ~ LI, and zero if q0 ~ Lz. In the last condition, 
relating the jumps in (2.5), the function 

o'----u and b = - ~ u d c p +  i)(t,O) 

0 

apart from small first-order terms. Then [O']g = [a3]~ = 0 and [)qk = 0, i.e. the tension of the centre 
line of the tread does not undergo jumps at the boundary points of the contact area. We will represent 
the penultimate condition, relating the jumps in (2.5), in the form 

pr3~0k[tik] +(nl l  - ~)[u'] k = 0, k = 1, 2 (2.6) 

The remaining 10 equations in (2.5), together with the two conditions imposed on the jumps (2.6), 
and the holonomic constraints (1.6) and (2.3), form a closed system of 14 equations in 14 unknowns: 
Xl, X2, X3, [~0, 13, K, 0, w, u, ~, % 9z, ~, ~t3. 

3. T H E  M O T I O N  OF A L O C K E D  W H E E L  

We will consider the two simplest modes of slipping of a locked wheel. We will assume that the contact 
area of the wheel with the plane OXIX2 moves forward with constant speed, namely, J(a = VcosT, 
)(2 = Vsin7, )(3, 13, 130, ~:, 0, w, u(q0), "o(q0), %, ¢P2, ~(q0), g3(~P) are constant quantities. Equations (2.5) in 
the case considered becomes essentially the conditions of equilibrium of a mechanical system with respect 
to a system of coordinates connected with the disc of the wheel and which translates with constant speed. 
We obtain these conditions from (2.5) by substituting into them functions corresponding to the steady 
mode. Note that 

2 ~ lr ~2  2 f p l r  • ~ )~21 • ~22 VqW -- j p  ~-~i = V [ (X'c°s[3° +'~2sin o ~ i + ( - X ' s i n [ 3 o  + Xzc°S[3o)~/]  

As a result we obtain the following system of equations 

- 2 f p l r V - l f f l ( ~ P 2 -  q01) + FlCOS ~ -F2s in  ~ = 0 

-2 fp l rV- I f~2 (q )2 -  q)l) + F1 sin~ + F2cos ~ = 0 

P = f~t3(cP)dqo, MzsinK+M3cos~¢ = nosA~ = 0, M 1 = n051¢ 
Lt 

M2 + 2fP lrV-1 X3 ()(1 cos ~0 + X2 sin I]o)(Ip2 - ¢Pl) - f ~t3rc°s Odqo = 0 

L 1 

no3w + 2 f p l V - l (  - )(l sin~o + )~2cosl]0)(cP2 - cPl) = 0 

(3.a) 

NI(  u, 1)) - 2 fp l r2V- l  ( Xlcos~o + J(2sinl]o)~(qo)eosO + M+(u, o) - r~t3)~(qo) sinO = 0 

N2(u , 1)) + 2fplr2V-l(XlCOS~o + X2sin~o)Z(~o)sinO- M_(u, v ) -  r~t3X(Ip)cosO = 0 

( n l l - ~ ) [ u ' ]  k = 0, k = 1,2 

Here  

Nl(u ,  o) = - n o - n o l u + n l l u " - ( m 2 1 - m z o ) U '  , M+(u, l)) = ~ ( l + u + o ' ) - [ ~ . ( u ' - l ) ) ] '  

N2(u, l)) = -no2O+ n l z o " - ( r n l 2 - m o 2 ) U '  , M (u, 1)) = [ ) ~ ( l + u + a ) ) ] ' + ~ ( u ' - o )  

It follows from relations (3.1) that the angle ~3 = 130. Without loss of generality, we can take 13 = 0. 
The first two relations of system (3.1) can then be represented in the form 

F l = 2 fp lr (cp2-cpl )cosy ,  F 2 = 2fplr(cP2-cPl)sin T 
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Further 
• - 1  

M l = n051¢, M 3 = -M2tgl¢, w = -2fplsmTno3(CP2-~Pl ) 

The equations which define the components of the displacement vector of points on the tread u(9) 
and aJ(~p) in the contact area and outside it, take the form: 

when (p ~ LI 

Nl(u, o) + 2 fplr2cosTsing? + M÷(u, o) - r~t3costp = 0 
(3.2) 

N2(U, I)) + 2 f p l r 2 c o s y c o s t p -  M_(u ,  v )  + r~hsin( p = 0 

when tp e L 2 

Ni(u, o) + M+(u, v) = O, N2(u, v ) -  M_(u, v) = 0 (3.3) 

In Eqs (3.2) the angle 0 under steady conditions is taken to be n/2. In Eqs (3.3) we put )~ = no + ~,a, 
where ~,1 is a small quantity, and we linearize the system obtained. We have 

+ )~1 - n o ( u  - v ) '  = 0 _nolu + nHu,' (m21_m2o) v, ' , 

-n02U+ n121)'' -(m12 - m02)u'- ~"1 -no(u ' -  v) = 0, u + l)' = 0 
(3.4) 

The last equation in system (3.4) is the linearized condition for the centre line of the tread of the 
tyre to be inextensible (2.3). 

We eliminate the unknowns u and )~1 from Eqs (3.4) and obtain the equation 

aol) (4) + a l l ) "  + a21) = 0 

a 0 = n i l - n 0 > 0  , a 1 = m 2 1 + m o 2 - m 2 0 - m 1 2 - n o l - 2 n o - n 1 2  , a 2 = n o 2 - n o > 0  

the general solution of which in the section L 2 = [(P2, 2re + %] has the form (everywhere henceforth 
summation is carried out from k = I to k = 4) 

V2(~P) = ~'~u(tP), Y~u(~P)= ,~_~CkeXp(pktP), P, ..... 4 :  + j a , + f f a ~ _ 4 a o a  2 l _  
2a0 " V  

(3.5) 

where Ca, . . . ,  C4 are arbitrary constants. The function u2(9) in the section L 2 is equal to 

u2(~o ) = -v'2(~o ) = -y~.(~o), ~ . ( 9 )  = ~,CkPkeXp(Pk~) (3.6) 

In the contact area L1 = [~01, (P2] the functions ua(q~), va(q)) are defined by relations (1.7), which, taking 
the equality O = n/2 + cp into account, can be written in the form 

u I = -tpsintp+ X3r-lcostp - 1, o t = - tpcostp-X3r-lsintp (3.7) 

Since the angle ~p is small in the contact area, linearization of relations (3.7) leads to the equalities 

U 1 = X3 r - l -  1, 1) 1 = -¢P(X3 r-I  + 1) (3.8) 

The conditions which relate the jumps at the boundary points of the contact area, have the form 

u l (%)=u2(2n+(P l ) ,  U1((P2) = U2(lP2), DI((Pl) = V2(2n+%),  DI((P 2) = D2(~02) 

and, taking relations (3.5), (3.6) and (3.8) into account, can be represented in the form 

X3 r-1 - 1 = -Eu(~p2) ----ECkpk, X3 r-I - 1 = - E u ( 2 ~  + {Pl) = - E u  (2g) 

-(p2(X3 r-1 + l) = ~v(~o2) = ~.C k, - ~Ol(Xsr -1 + 1) = y_~u(2n + %) = ~ u ( 2 ~ )  
(3.9) 
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F rom Eqs (3.9) we de te rmined  the coefficients C1, . . . ,  C4 and then,  the functions 1)2((p) and u2(qo) 
in the form 

o2(~p) = EDkexp(pkqo) ,  u2(qo) = - E O k p ~ e x p ( p k q ) )  

D k = dlk~l + d2ktp2 + d3k ( 1 - X3r -1) 

The  expressions for  the coefficients dsk (s = 1, 2, 3; k = 1 . . . .  , 4 )  are not  given here  in view of  their  
complexity. We merely  note  that, on the left-hand sides of  Eqs (3.9) the coefficient i + X3r  -1 = 2. F rom 
the first relat ion of  (3.4) we obtain 

)~! = l ) ' " (n l l  - n o )  + l) ' (m21 -m20-no-no l )  = 

= E D k p k e x p ( p k c p ) [ ( n l l  - no)p~ + (reel - m2o -- n o - nol)] 

Hence,  we have found the Lagrange multiplier E = n o + )~1, the value of  which determines the tension 
of  the centre  line of  the t read outside the contact  area. The  Lagrange multipliers )~ and ~t 3 in the area 
of  contact  of  the wheel  with the plane are de termined  from the first two equations of  system (3.2), taking 
expressions (3.7) into account,  in the form 

)q = - 2 fp l r2cosy  + [n o + 3nil - 2(m21 - m2o ) - 2no2 - 4n12 - 3(m12 - mo2)]( p 
(3.10) 

rgt 3 = - n o - 3n H + 2(m21 - m20 ) + n01(1-  X3 r - l )  

In expressions (3.10) we have retained terms of  the zeroth and first order  of  smallness after calculating 
the derivatives of  the functions represented  in (3.7). The  multiplier gt3, according to (3~10), is a constant,  
apar t  f rom terms of  the second order  of  smallness, while the tension in the t read in the contact  area 
varies linearly. The  force P and the m o m e n t  M2, which act on the wheel  disc, can be found f rom system 
(3.1), apart  f rom small first-order terms, in the form 

P = r - l [ - n o - 3 n l l  + 2(m21 -m2o)](IPz-q01) 

M 2 = -rP(~p2 + q01)/2 - 2fplrX3cosy(cp2 - cpl ) 

The  relat ions obta ined enable  us to de te rmine  all the characteristic steady modes  of  slipping of  the 
wheel  with a tyre, namely,  the relations between the forces, moments  and functions describing the 
deformat ion  of  the tyre, and the general ized coordinates  characterizing the translational mot ion  of  the 
wheel  disc. 

The second steady motion of  the locked wheel with slipping is defined as spinning with constant angular 
velocity a round the axis CX3, when 

X l = X 2 = 0, X 3 = const 

~0 = ~ = co = const, ~ = const, w = 0, 0 = n/2 ,  q01 = -q02 = const, k(cp), ~3(qo) 

In this case of  steady motion, the work done  by the forces of  dry friction making virtual displacements 
can be represen ted  in the form 

IP2 1 
' ~Zle  1 + 8Z2e 2 . 

8 A f  = - f p l r  f f [e 3 × ( -  rq)e I +/~e2) ] /.-7~,2---2--~ d~0d~ sign ]30 
-~2-1 d l ~  +rCp 

and fur ther  

15Zl = 15X1 cos[30 + 6X2sin [30 - 8130l~ - X380 - 6ursinqo - 8orcosqo 

8Z 2 - 8X l sin 13 0 + 8X2cos ~o - 8~or~P + 8wr  

cP2 1 

~Af - f p l r  f f A/12~2+ r2~p2dcpd~8~osign~o=-2fplrq)2£ r2 2 . • = + ¢P28130 sign 13o 
~-~o2-1 

(3.11) 
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The integral in (3.11) is equal to the sum of four integrals, which can be evaluated approximately by 

replacing the integrand by ~ + r2q@2. In fact, this replacement indicates that the friction force field 
in the contact area is replaced by four friction forces, applied at points with coordinates { = _+ 1/2, 
~P = +-q)2/2. 

System of equations (2.5) can be transformed into the following system 

F ( ~ )  = 0, F ( ~ - 2 ) =  O, P = Ig3(q0,dlp,  r 2 n o 3 w  = 0 

Ll 

2 2 . • 
M2sinle + M3cos tC-nosA  ~ = O, n o s A ~ - 2  fplrcP2 + r qo2sign~o = 0 

( J 2 d  --  2 . Jla)o~ cosKslnl(+ M a -n051~ = 0, M 2 -  Ig3r(pdlp = 0 

Ll 

(3.12) 

pr3Eo2[( 1 + u)  sin2 ~p + lJsing)cosqo] - n o - n o i u  + n i l u " -  (m21 - m2o) v' + 

+ ~( 1 + U + 0') - [)~(u' - 0)]' - r~t3)~(tp)cost p = 0 

pr3012[( 1 + u)  sincpcoslp + vcos2cp] - n o 2 0  + n121)  '' - (m12 - mo2)U' - 

- [)~( 1 + u + 19')1' - ~ (u '  - 1)) + r l t3~(Ip)s in lp  = 0 

From Eqs (3.12) we can determine the relations between the parameters of motion and also the forces 
and moments required to achieve spinning 

2 . 

F l = F 2 = O, M l = nos l~+(J ld-J2d)O)  sin~cos~, M 2 = 0 

-1 $ 2 2 • 
M3cosK: = no5A[3, w = 0, AI3 = 2fplrno5tP2 + r %slgn[~o 

Note further that the functions g3(qo), ~.(tp), u(~p) are even, while the function v(q0) is odd. The 
approximate equations u _=_ rqX3 - 1, u'  _=_ -3% u" _=_ -3, v _=_ -2% v '  --- -2, ~" ~ 4 follow from formulae 
(1.7) in the contact area L1. Using these equations, we obtain from the last two equations of system 
(3.12) 

r g  3 = - n  o + n o l ( 1 - r  -1X 3 ) + 2 ( m 2 1 - m 2 o  ) - 3 n I l  

~' = [pr30) 2 - 2n02 - 4n12 - 3(m12 - too2 ) + n o + 3n u - 2(m21 - rn2o)lq~ 

With the accuracy assumed above, we can determine the relation between the value of the contact 
area and the vertical force 

P = 2t02g 3 = 2q02 r q  [ -  n o + 2(m21 - m2o ) - 3n i l  ] 

To determine the form of the deformed tread it is necessary to obtain a solution of the last two 
equations of system (3.12), taking into account the conditions imposed on the jump at the boundary 
points of the contact area [£]k = 0, [v']~ = [u']k = 0. The solution of this problem is in many ways similar 
to the solution of the problem of determining the form of the tread in the case of the translational motion 
of a wheel with a constant speed. If we put  u = v = 0 in these equations in the terms containing 

2 2 centrifugal forces of inertia (the terms with m ), and assume )~ = no - pr3m + ~.1, then after eliminating 
u and ~.t from the system of linear equations obtained, we derive the equation 

3 3 
bo u(4) + b i o " +  b2o = ~pr  o~2sin2~p (3.13) 
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b 0 = n l l - n o + p r 3 c o  2 

b 1 = m21 + too2 - m20 - m12 - nol - n12 - 2n 0 + 2pr3002 

3 2 
b 2 = no2 - n o + .  o r  co 

We obtain  a par t icular  solut ion of  Eq. (3.13) in the fo rm 

3 3 2. 
vp = ~ p r  co ( 1 6 b 0 - 4 b  t + b2)-lsin2tp 

while the genera l  solution of  h o m o g e n e o u s  equa t ion  (3.13) aJg has the fo rm (3.5) with modif ied 
coefficients P.x and sy_mmetrical bounda ry  condit ions when  q01 = -q02. Correspondingly,  the modif ied  
coefficients C1 . . . .  , C4 are found f rom a system of  equat ions  of  the type (3.9) 

1 - X3 r-1 - 3pr3co2( 16b 0 - 4b 1 + b2) -1 --- Z Ck/~k --- Z Ckpkexp(2npk)  

-tP212 + 3 p r 3 c o 2 ( 1 6 b o -  4 b ,  + b2)-11 = Z C t , - - - - Z  Ckexp(2~,bk) 

in the fo rm 

Ck = e l k q ~ 2 + e 2 k [ l - X 3 r - l - 3 p r 3 0 3 2 ( 1 6 b o - 4 b l + b 2 ) - l ] ,  k = 1 . . . . .  4 

with the condi t ion that  

3pr3co2( 16b o - 4b I + b2) -1~ 2 

Expressions for  the coefficients esk (S = 1, 2; k = 1, . . . ,  4) are not  given here  in view of  their complexity. 
T h e  shape  of  the de fo rmed  t read  outs ide the contac t  a rea  is symmetr ica l  about  the  p lane  Cyly2 and is 
descr ibed by the funct ions 

u2(q) ) = -o'2(q)), o2(qo) = 3 p r 3 c o 2 ( 1 6 b o - 4 b l  + b2)-lsinq0cosq0 + ZCkexp(/~kq)) 

The  correct ion )~I(~P) to the tension of  the t read outside the contact  area  is found f rom the penul t imate  
equa t ion  of  system (3.12) taking the funct ions u2(q~) and v2(qo) ob ta ined  above into account,  We have 
thus comple ted  the de te rmina t ion  of  all the steady-spinning characterist ics and the forces and m o m e n t s  
requi red  to obta in  it. 
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